GEOSYNTEC CONSULTANTS COMPUTATION COVER SHEET | Project/Proposal | | rporation Project:
k #: 1 | White Mesa Mi | II, Pond 4A | _ | |---|------------------------|---|---|-------------|-----------------| | Title of Computa | ntions: <u>Emerger</u> | acy Spillway Concr | ete Pavement | | | | Computations By: Assumptions and Procedures Checked By (Peer Reviewer): | | SIGNATURE | | | 1/6/c=6 | | | | Steven M. Fitzwilliam, Sr. Project Engineer PRINTED NAME AND TITLE SIGNATURE Gregory T. Corcoran, Associate PRINTED NAME AND TITLE | | | DATE | | Computations Checked By: Computations Backchecked By (Originator): Approved By (PM or Designate): | | Signature Signature | | | UC/OL
DATE | | | | Gregoly T. Corcoran, Associate PRINCED NAME AND TITLE SIGNATURE Steven M. Fitzwilliam, Sr. Project Engineer PRINTED NAME AND TITLE SIGNATURE Gregoly T. Corcoran, Associate PRINTED NAME AND TITLE | | | 1/6/06
DATE | | | | | | | 1/C/ole
DATE | | Approval Notes: | | | | | | | | | | | | | | Revisions: (Num | ber and Initial | All Revisions) | | | | | No. | Sheet | Date
© 22 (X) | Ву
5F | Checked By | Approval | | | | | | | | | | | | *************************************** | | | ## **GEOSYNTEC CONSULTANTS** Written by: Steve Fitzwilliam Date: 05 / 01 / 06 | Reviewed by: Greg Corcoran Fig. Date: 05 / 01 / 06 | Project: White Mesa Mill, Pond 4A | Project/Proposal No.: SC0349 | Task No.: ______ Where A is the area of the circle (based on tire pressure and tire load, Attachment E) and D is the diameter of the circle. Rearranging and solving for D: $$D = 2\sqrt{\frac{A}{\pi}} = 2\sqrt{\frac{50 in^2}{3.14}} = 8.0 in$$ Therefore a circle with a 8.0-in. diameter has an area approximately equal to the contact area of one vehicle wheel (50-in²). Next, the distance between wheels on the axle must be incorporated into the design method. The length between the back two wheels on a pick-up truck is utilized to determine the equivalent forklift axle wheel spacing. This distance was assumed to be 60-in. The equivalent wheel base, equivalent contact circle diameter, and the D/k value are then utilized to determine the basic bending moment in the slab (in-lb/in) that results per kip of wheel load applied. From Figure A2.2.2 (Attachment C), we see that the basic bending moment due to the two wheels is 165 plus 5 in-lb/in/kip, which results in a total moment of approximately 170 in-lb/in per kip stress. This value is multiplied by the "wheel" load to give the design moment. Based on a total vehicle operating weight of 10,000 lbs. The wheel load is: "Wheel load" = $$\frac{Total\ axle\ weight}{\#\ of\ wheels} = \frac{8,000\ lbs}{2} = 4,000 \frac{lbs}{wheel} = 4.0 \frac{kip}{wheel}$$ Multiplying the basic moment by the "wheel load", the resulting design moment is: $$Design \ moment = basic \ moment \ \times \ wheel \ load = \left(205 \frac{in - lb}{in} \right) \times \left(4.0 \ kip\right) = 820 \frac{in - lb}{in}$$ This design moment and the total allowable flexural stress are utilized to assess if the initial guess for slab thickness is valid. The total allowable flexural stress is the MOR (f_r) divided by a safety factor (SF). For concentrated loads, ACI 360 recommends a SF value between 1.7 and 2.0. For this design, the lower value of 1.7 will be utilized. The 1.7 SF value results in a total allowable tensile stress of: $$\frac{MOR}{SF} = \frac{411 \, psi}{1.7} = 242 \, psi$$